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Secret3D Workflow for Secretome Analysis
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How are amyloids produced?

Comparative Role of ApoE in pathological and ph}rslnloglc'hlds
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BACE2 produces amyloid aggregates in melanoma
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BACE2 in cancer
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The emerging role of -secretases in cancer
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Amyloid aggregates are new players in tumor

microenvironment

BACEZ inhibition
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ARTICLE OPEN ‘h Check for updates
Unveiling the mechanistic link between extracellular amyloid
fibrils, mechano-signaling and YAP activation in cancer

Francesco Farris, Alice Elhagh (', llaria Vigorito', Nicoletta Alongi'®, Federica Pisati’, Michele Giannattasio (3",
Francesca Casagrande', Lisa Veghini®, Vincenzo Corbo ()**, Qaudio Tripodo (3", Arianna Di Napoli (Y, Vittoria Matafora'™ and
Angela Bachi ('™
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Amyloid aggregates accumulate in melanoma
metastasis modulating YAP activity

Article
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BACE2 in cancer is |

BACE2 expression in melanoma cell lines
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inked to lipid metabolism

Gene Expression Profiling Interactive Analysis
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lipids dentification & nano LC-MS/MS
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Increasing lipid availabilty promotes BACE2 oy
“gzaef’ expression and cell proliferation
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- What is the molecular link between lipid W
metabolism and BACE2 activity?
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BACE2 regulates lipid transporters activity and lipid uptake
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Which are the functional consequences of modifying lipid
uptake in cancer cells?
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- High BACE2 cancers show an enhaced lipid metabilism
- Increasing extracellular lipids increases BACE2 levels
- BACE2 tunes lipid influx by modulating lipid transporters activity

- More BACE2, higher proliferation of cancer cells
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Protein Class

BACE?2 affects lipid metabolism and proliferation

PROTEOMICS

@ Cholesterol metabolism
Fatty Acid metabolism

~log10(pvalue)

-log10(pvalue)

75 o
: !
5.0 | :
|
. [APoE)
3 | (scarsi]
! '
25 (i)
---------------------------
0.0 | .
-5.0 -2.5 0. 25 50
log2(WM266.4 3/DMSO)
:
6- : :
i
5
i
: :
4-
LR .
[ForTi};
- :
: |(SCARST)
2 EVDACZ] \[HADH]\{CYP51A1]
””””””””””””””” :””’J.”””””””””””
0- 1
-5.0 -2.5 25 5.0

00
log2(CAPAN2 3//DMSO)

LIPIDOMICS

DMSO

31

TAG
3o © DMSO
o 3l
* * * * * * * * *
2 -
1 -
o o
8 o O Vo o o — S S
4 o o o © ©
O]
-1 o)
- (9 () Q>
o ¢ o
2= o
-
3
3 T T T T T T T T T
\”‘Q \“Q o \6\ \G’Q N '3’\ v@’\ '3’\

Unpublis

\Y4 \Y4 \Y4 \Y4 \Y4 Q7 Q7 N7 N7
v N N> NG N & o’ N N N
7 7 7 7 7 7 7 7 7
& S & o o & & &
$ & $ & & <@ & < &
O N &® AN N N AN AN AN
> ol > Gl Cd Cd ol i Cd
& 4 © o o o o ©
< <L < R « « « « «

FC_intra
- O DMSO
o 3l *

)

1

oodldo o

Zscore

fbr o

1
ST 27:1;0

hed data

C nceéropole
fle-de-France

L]
REPUBLQUE
FRANGAISE |

X L
e = ou R

WM266.4
ek kK
o 1.0
2
o
o
£
2 0.5
]
o
0.0-
DMSO 3iI
CAPAN2
ek ok ok
o 1.0
2
)
=]
£
2 0.5-
]
o
0.0-
DMSO 3I

IF&OM




C nceéropole
fle-de-France

DMSO 3l
ook
154 1S 159 —————
—_— ok
T 1.0 i 2 1.0 =
q, U — ) .04
Ko} -
;
£ 054 E
g = 0.5
Q
0.0-
DMSO GW3965 31 3H+GW3965 0.0-
DMSO SSO 31 31+8S0
"~ GW3965 GW3965+3]
FA influx 1s a major contributor to the anti-proliferative effects of BACE?2 inhibition.
IF‘ ; ’M Unpublished data




" PPRQ

Intracellular FA DHA
[ oMso (FFA 22:6)
= 3 **
'
(]
t.
So
7]
N u
14 PUFA
IIIIIIIIIIII:IIIIIIIIIIII
S @x\ A 00‘0 OOy (po\@\ O
v~\"~\ FFEE V”A*\\ S FEEE
o:x& \,Vo'o@o,,:b ‘\{*Q @ \,\\«,\o(}\@o.@
Q & & @ &R
¥ & V'oe &
& &
o o

IFEOM

Z-score

.
C /5‘\ Fatty acids (FA)
B G
) G Acyl-CoA
o DMSO o© 3l
2_
1 ’__\2_ ’_‘°—e -OX|dat|on
o o
0
| ' g Acetyl -CoA /
o
14 o _g_ \_/\'( TCIA\
o cycle
-2 T T T \y /
LIPE  ACSL3  CPTIA

PPRa target genes

BACE2 increases intracellular PUFA and activates

Acetate

-
L

Citrate

Hle-de-France

(] o
e
FRAMGAISE (| I

oy o, NATK L

e = ou R

o DMSO o 3l

o

50
/ |
1 &

Z-score
o

f_Tk_l*

Acetyl-CoA 2 i i .
ACSS2 ACLY FASN
\ o DMSO © 3l
2 * * *
Cholesterol . ! s s | s | ws
biosynthesis a " |E > | &° -:- <+ | T
98 0
g o ) - bt
D o= T T T T T T ™ e

1 1 T 1 1 1 1 1 1
HMGCS1 MVK MVD IDIi FDPS FDFT1 LSS CYP51ADHCR24

Unpublished data




Lipid transporters accumulation is faster than
lypolisi and steroidogenesis
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BACE2 is a lipid sensor and gatekeeper
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Polyunsaturated Fatty Acids
(PUFA)

TR

1

Phospholipid -PUFA PL- PUFA

PL-PUFA
assembly into
membranes GSSG GSH
l % GPX4
PUFA-OH

Lipid
peroxidation
PL-PUFA-OOH

1
venerre [{T1R% TR
M@gﬁl .@M

How lipid overload impairs cell proliferation?

The antioxidant capacity is compromised
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Conclusions and perspectives
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How is the specificity for lipid transporters regulated?

How is BACEZ2 expression regulated?
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 BACE2 regulates lipid transporters shedding and lipid uptake in
cancer and normal cells

* BACE2 regulates intra and extracellular lipid content

* Manipulating lipid fluxes affects cancer cells viability inducing a
lipid overload mediated toxicity

e Lipid metabolism could be targeted in BACE2 over-expressing
tumors

 BACE2 in combination with ferroptosis inducers to enhance the
anti-tumoral effects

Can we exploit BACE2 modulation to rewire immune/stromal cells metabolism or reprogram their behavior in cancer

TME ?
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= toxic for the cells
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